

However, there are already enough clues to justify further investigation of the non-cholinergic biochemical and physiological functions of the cholinesterases. The possible involvement of cholinesterases in cell growth and movement has far-reaching implications for our understanding of the maturation of cells in the nervous system and blood.

Acknowledgements

The author acknowledges the support and advice of Dr Bruce Livett and Prof. Ian W. Chubb on various aspects of work on AChE.

References

- 1 Greenfield, S. (1984) *Trends Neurosci.* 7, 364-368
- 2 Silver, A. (1974) in *The Biology of Cholinesterases*, North Holland
- 3 Massoulie, J. and Bon, S. (1982) *Annu. Rev. Neurosci.* 5, 57-106
- 4 Eckenstein, F. and Sofroniew, M. V. (1983) *J. Neurosci.* 3, 2286-2291
- 5 Ott, P., Lustig, A., Brodbeck, U. and Rosenbusch, J. P. (1982) *FEBS Lett.* 138, 187-189
- 6 Paulus, J.-M., Maigne, J. and Keyhani, E. (1981) *Blood* 58, 1100-1106
- 7 Small, D. H., Ismael, Z. and Chubb, I. W. (1987) *Neuroscience* 21, 991-996
- 8 Small, D. H. (1989) *Neurosci. Lett.* 95, 307-312
- 9 Small, D. H. (1989) *Neuroscience* 29, 241-249
- 10 Checler, F. and Vincent, J.-P. (1989) *J. Neurochem.* 53, 924-928
- 11 Sikorav, J.-L., Duval, N., Anselmet, A., Bon, S., Krejci, E., Legay, C., Osterlund, M., Reimund, B. and Massoulie, J. (1988) *EMBO J.* 7, 2983-2993
- 12 Small, D. H. and Chubb, I. W. (1988) *J. Neurochem.* 51, 69-74
- 13 Small, D. H. and Simpson, R. J. (1988) *Neurosci. Lett.* 89, 223-228
- 14 Rosenberry, T. L. (1975) *Adv. Enzymol.* 43, 103-218
- 15 Monard, D. (1988) *Trends Neurosci.* 11, 541-544
- 16 Van Nostrand, W. E., Wagner, S. L., Suzuki, M., Choi, B. H., Farrow, J. S., Geddes, J. W., Cotman, C. W. and Cunningham, D. D. (1989) *Nature* 341, 546-549
- 17 Hamilton, J. A., Stanley, E. R., Burgess, A. W. and Shadduck, R. K. (1980) *J. Cell. Physiol.* 103, 435-445
- 18 Soreq, H., Zamir, R., Zevin-Sonkin, D. and Zakut, H. (1987) *Hum. Genet.* 77, 325-328
- 19 Lapidot-Lifson, Y., Prody, D. A., Ginzburg, D., Meytes, D., Zakut, H. and Soreq, H. (1989) *Proc. Natl Acad. Sci. USA* 86, 4715-4719
- 20 Burstein, S. A., Adamson, J. W. and Harker, L. A. (1980) *J. Cell. Physiol.* 103, 201-208
- 21 Layer, P. G., Alber, R. and Sporns, O. (1987) *J. Neurochem.* 49, 175-182
- 22 Rieger, F., Shelanski, M. L. and Greene, L. A. (1980) *Dev. Biol.* 76, 238-243
- 23 Rotundo, R. L. and Carbonetto, S. T. (1987) *Proc. Natl Acad. Sci. USA* 84, 2063-2067

TEXTBOOK ERRORS

Propagation of an error: β-sheet structures

Arthur S. Edison

I have found mistakes in the diagram of both parallel and anti-parallel β-sheet diagrams in Linus Pauling's *The Nature of the Chemical Bond*¹ that have been propagated for 30 years by many of the most widely used textbooks in biochemistry.

which has become known as the right-handed α-helix⁵. This work was based upon model building which incorporated the authors' knowledge of the planar peptide bond, bond angles, and bond lengths. In each of these papers³⁻⁵ the authors were discussing L-amino acids, but the diagrams contained what we now designate D-amino acids. However, in the publication on helical configurations⁵ the authors state: 'An arbitrary assignment of the R groups has been made in the figures'. At the time of this initial work in 1951, the absolute configuration of the amino acids was not known, and the authors made a random guess that was later shown to be incorrect.

Around this same time, Bijvoet and co-workers⁶⁻⁸ developed the method of isomorphous replacement for X-ray

crystallography which enabled them to determine the absolute configurations of a wide range of optically active compounds, many of which could be related, by chemical methods, to the naturally occurring amino acids.

In 1955, Pauling, Corey and Marsh published a paper on the structure of silk fibroin⁹. In this paper, the diagram of the anti-parallel β-sheet was drawn with the correct configuration of L-amino acids which corresponds to S (except for cysteine) in the R/S system of Cahn, Ingold and Prelog^{10,11}.

This shows that the papers published in 1951 and 1955 by Pauling and colleagues were correct in their representation of β-sheet structures: in 1951 because the absolute configuration of amino acids had not yet been determined, and in 1955 because they cor-

WHILE STUDYING Creighton's *Proteins: Structures and Molecular Properties*², a required text for the course in biomolecular structure at the University of Wisconsin, I discovered that a short model of a polypeptide chain which I had built could not be oriented so that it corresponded to the diagram of β-sheet structures. Neither the parallel nor the anti-parallel drawings would fit my model, so I checked the model for the proper L-amino acids. Finding it to be correct, I soon discovered that both β-sheet diagrams in Creighton are drawn with D-amino acids.

These diagrams² were adapted from Pauling's *The Nature of the Chemical Bond* (3rd edn)¹. I assumed that Creighton's diagrams had been inadvertently reversed during publication, but to my surprise, the β-sheet structures in Pauling's great text are drawn with D-amino acids. This apparent error prompted me to examine the original papers.

The first proposal of β-sheet structures was made by Pauling and Corey in 1951^{3,4}. During the same period of time, Pauling, Corey and Branson proposed two hydrogen-bonded helices, one of

A. S. Edison is at the Biophysics Program, 420 Henry Mall, University of Wisconsin, Madison, WI 53706, USA

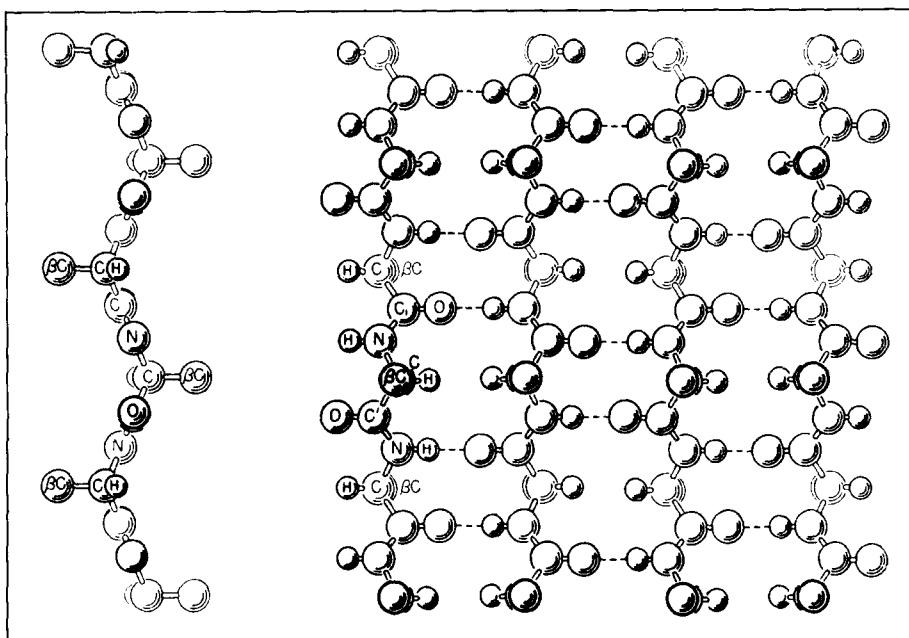


Figure 1

β -sheet diagram drawn with L-amino acids; reproduced, with permission, from Ref. 9.

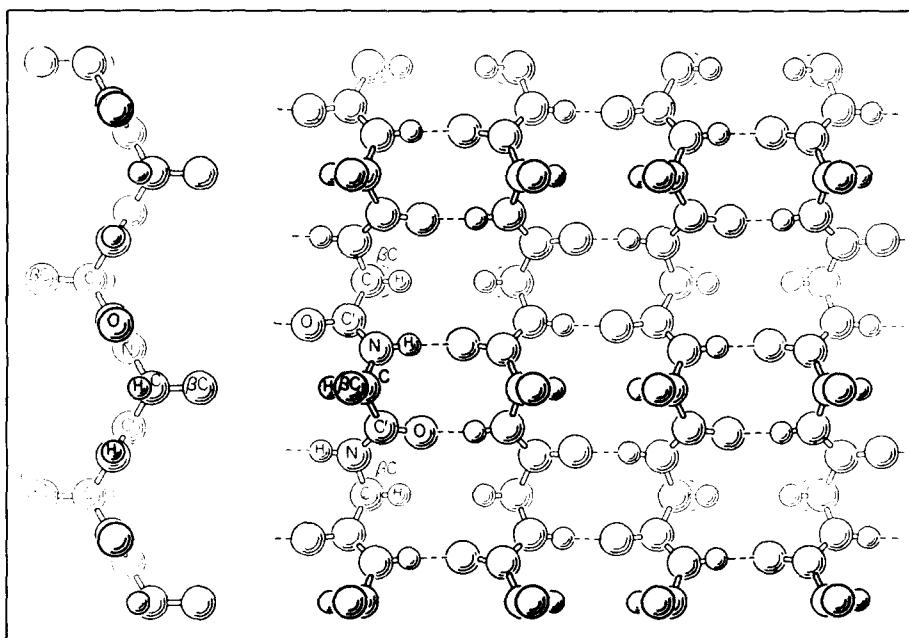


Figure 2

β -sheet diagram drawn with D-amino acids; reproduced, with permission, from Ref. 1.

rectly represented the known configurations of L-amino acids. However, in the third edition (1960) of *The Nature of the Chemical Bond*¹, the 1951 diagrams of β -sheets were used. As a result, the drawings incorrectly show D-amino acids.

The unfortunate, but amusing, outcome of this mistake is that many textbooks in biochemistry, biophysics and molecular biology have adapted the incorrect diagrams. During a short visit

to the library, I found 11 other textbooks, including all four editions of Watson's *Molecular Biology of the Gene*, that have propagated this error¹²⁻²⁰. This was just a random sampling, and I am sure that others could be found. I would doubt that an error such as this would have been propagated for 29 years had it not occurred in a book written by one of the world's greatest chemists².

Acknowledgements

I thank John Markley and Ivan Rayment for their assistance in this investigation.

References

- 1 Pauling, L. (1960) in *The Nature of the Chemical Bond* (3rd edn), p. 501, Cornell University Press
- 2 Creighton, T. E. (1984) in *Proteins: Structures and Molecular Properties*, p. 174, W. H. Freeman & Company
- 3 Pauling, L. and Corey, R. B. (1951) *Proc. Natl. Acad. Sci. USA* 37, 251-256
- 4 Pauling, L. and Corey, R. B. (1951) *Proc. Natl. Acad. Sci. USA* 37, 729-740
- 5 Pauling, L., Corey, R. B. and Branson, H. R. (1951) *Proc. Natl. Acad. Sci. USA* 37, 205-211
- 6 Bijvoet, J. M., Peerdeman, A. F. and van Brommel, A. J. (1951) *Nature* 168, 271-272
- 7 Bokhoven, C., Schoone, J. C. and Bijvoet, J. M. (1951) *Acta Crystallogr.* 4, 275-280
- 8 Trommel, J. and Bijvoet, J. M. (1954) *Acta Crystallogr.* 7, 703-709
- 9 Marsh, R. E., Corey, R. B. and Pauling, L. (1955) *Biochim. Biophys. Acta* 16, 1-34
- 10 Cahn, R. S. and Ingold, C. K. (1951) *J. Chem. Soc.* 612
- 11 Cahn, R. S., Ingold, C. K. and Prelog, V. (1956) *Experientia* 12, 81
- 12 Watson, J. W. (1965, 1970, 1976) *Molecular Biology of the Gene* (edns 1-3) W. A. Benjamin
- 13 Watson, J. W., Hopkins, N. H., Roberts, J. W., Steitz, J. A. and Weiner, A. M. (1987) *Molecular Biology of the Gene* (4th edn), p. 52, the Benjamin/Cummings Publishing Company
- 14 Schellman, J. A. and Schellman, C. (1964) in *The Proteins* (H. Neurath, ed.), Vol. II, p. 23, Academic Press
- 15 Mahler, H. R. and Cordes, E. H. (1971) in *Biological Chemistry* (2nd edn), p. 139, Harper & Row Publishers
- 16 Sutcliffe, J. W. (1977) in *Introduction to Biochemistry* (2nd edn), p. 85, Holt Rinehart & Winston
- 17 Vol'kenstein, M. V. (1977) in *Molecular Biophysics*, p. 168, Academic Press
- 18 Vol'kenstein, M. V. (1970) in *Molecules and Life*, p. 170, Plenum Press
- 19 Harrow, B. and Mazur, A. (1966) in *Textbook of Biochemistry* (9th edn), p. 68, W. B. Saunders Company
- 20 Lehninger, A. L. (1982) in *Principles of Biochemistry* (2nd edn), p. 155, Worth Publishers

Erratum

In the article entitled 'Tissue-specific genes for respiratory proteins' by Margaret I. Lomax and Lawrence I. Grossman (TIBS 14, pp. 501-503), Table I contained two errors. The two cytochrome c oxidase subunits *COX4* and *COX6A* are both located on human chromosome 16 and not chromosome 15.